Parieto-occipital connectivity during correct and incorrect feature integration

Pablo Rodríguez-San Esteban, Ana B. Chica & Pedro M. Paz-Alonso

External information

Internal information

Block (1995) Access consciousness

Percetual integration

Phenomenal consciousness

Attention?

Feature Integration Theory

(Treisman and Gelade, 1980)

Feature Confirmation Account (Humphreys, 2016)

- Slow attentional confirmation
- Emerges from parietal cortex

Bottom-up Feature integration

- Early coding in visual areas
- Quick but unstable representations

Neuropsychological evidence:

- parietal and parieto-occipital lesions
- Increased rates of illusory conjunctions

Neuroimaging studies:

- parietal and occipital lesions activations
- Increased rates of illusory conjunctions

Neurostimulation studies:

 TMS over parietal cortex can increase illusory conjunction proportions Key role for the parietal cortex attention vs feature confirmation

(Robertson, 2003)

(Donner et al., 2000)

Hypotheses and aim

- Explore neural mechanisms associated with correct and incorrect feature integration
- Compare predictions of the FIT and the FCA

More illusions in the more demanding conditions

FIT	FCA
Increased parietal and FEF activation (attentional processes)	Increased parietal activation (top-down feedback)
Greater occipital response for hits	Larger (but unstable) response in occipital cortex for illusions

Titration procedure: ~70% correct responses

→ No differences in Central task conditions

Hit

→ Main effect Central task (far > near)

→ Main effect Trial type (hits > illusions)

Hits > Ilusions (cluster FWE-corrected, p < 0.001)

- Fronto-parieto-occipital areas involved in feature integration
- In line with previous evidence
- How are they connected?

- Interaction Trial type × Time (p < .001)
- Greater intensity for illusions at early time points
- Only significant in visual areas

Functional connectivity: pairwise analysis

Main effect **Trial type** stronger functional coupling for **hits** than illusions

Functional connectivity: pairwise analysis

Trial type × Time window interaction increased coupling for hits in the later time window

Functional connectivity: whole-brain analysis

Hits > Null

Illusions > Null

Overlap

Conclusions

- Central task demands did not modulate illusory conjunctions rates
- Critical role of the parietal cortex in feature integration
- Correct integration (hits):
 - Overall increased activation of parieto-occipital areas and FEF
 - Stronger occipito-parietal coactivation
- Incorrect integration (illusions):
 - Increased activation of visual regions at early stages of processing
 - Decreased occipito-frontal coactivation at later stages
 - Lower occipital coupling with parietal cortex

Conclusions

In line with **FCA**:

→ Early coding in visual areas (bottom-up)

→ Top-down (parietal) feedback to form stable perceptual representations

→ Weak and encapsulated functional coupling for illusions

→ Importance of not only parietal cortex, but also visual regions

Parieto-occipital connectivity during correct and incorrect feature integration

Ana B. Chica

Pedro M. Paz-Alonso

